

Product Specification

Product:	Bluetooth 4.0 BLE Module
Module Number:	CG-BT4GMD
Doc Version:	V1.3
Data:	September 3,2014

Section 1:Overview

The CG-BT4GMD is a Bluetooth 4.0 module based on the Broadcom BCM20732 specification basic rate-compliant stand alone baseband processor with an integrated 2.4GHz transceiver.

The module includes EEPROM, crystal and PCB antenna.

1.1 Applications

The following profiles are supported in ROM:

- Battery status
- Blood pressure monitor
- Find me
- Heart rate monitor
- Proximity
- Thermometer
- Weight scale
- Time

Additional profiles that can be supported from RAM include:

- Blood glucose monitor
- Temperature alarm
- Location

1.2 Features

- Bluetooth low energy (BLE)-compliant
- Supports Adaptive Frequency Hopping
- Excellent receiver sensitivity
- 10-bit auxiliary ADC with nine analog channels
- On-chip support for serial peripheral interface(SPI,UART) (master and slave modes)
- Programmable output power control
- Integrated ARM Cortex™-M3 based microprocessor core
- On-chip power-on reset (POR)
- Support for EEPROM and serial flash interfaces
- Integrated low-dropout regulator (LDO)
- On-chip software controlled power management unit
- Package type:20*13*2mm FR4 PCB with 25 pads located around the perimeter.
- RoHS compliant

1.3 Functional Description

The primary component on the module is the Broadcom BCM20732, which is a Bluetooth 4.0 compliant basic rate single-chip. The baseband and radio have been integrated into a single chip implemented in standard digital CMOS. The block diagram of the module is shown in Figure 1.



Figure 1: Block Diagram

The CG-BT4GMD employs an integrated ARM Cortex™-M3 microprocessor core that runs software from the Link Control layer up to the Host Controller Interface (HCI). The baseband portion of the CG-BT4GMD performs all the time-critical functions required for high-performance Bluetooth operations.

The radio incorporates the complete receive and transmit paths, including PLL, VCO, LNA, PA, upconverter, downconverter, modulator, demodulator, and channel select filtering.

The module has a SPI interface. The interface has a 16-byte transmit buffer and a 16-byte receive buffer. To support more flexibility for user applications. The module acts as an SPI master device that supports 1.8V or 3.3V SPI slaves.

1.4 Physical Description

The CG-BT4GMD is a 20*13*2mm FR4 PCB with 25 pads located around the perimeter. Figure 2 shows the pinout diagram of the module.

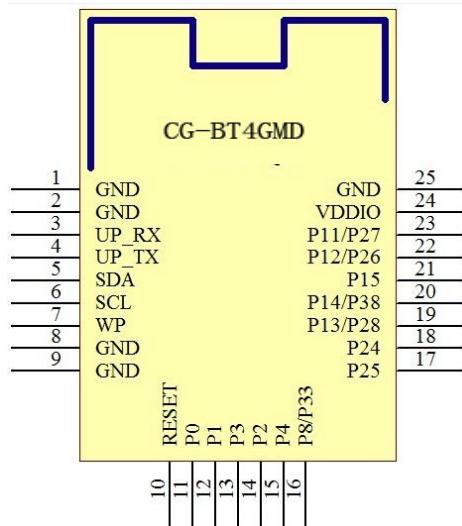


Figure 2 Pin Location

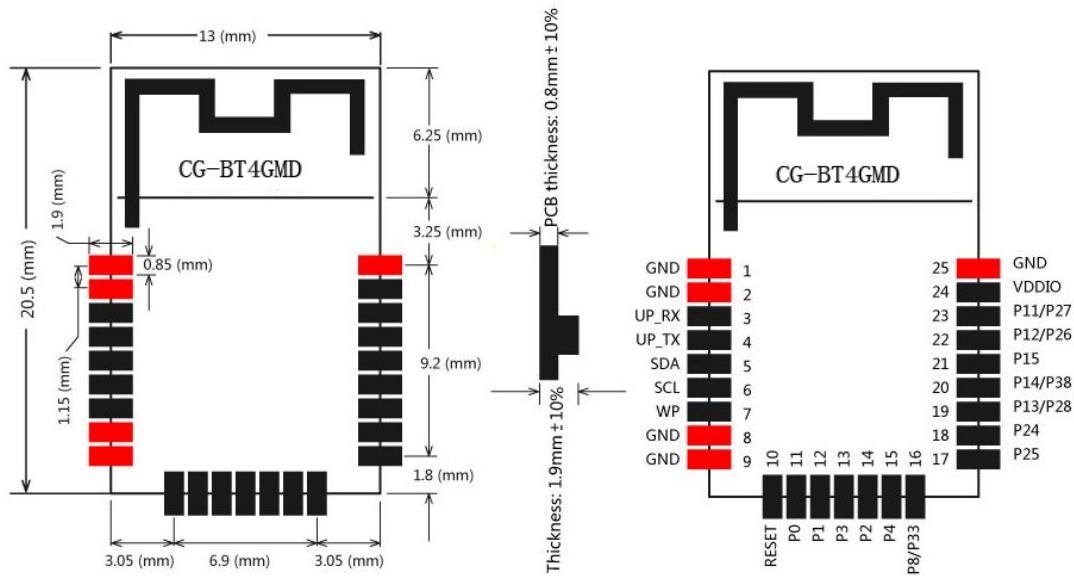


Figure 3 : Module PCB Layout Mechanical Specification

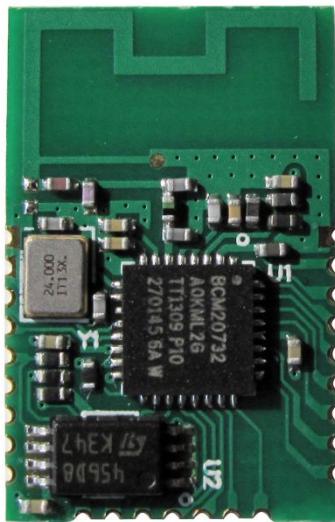


Figure 4 : Module PCB Top view

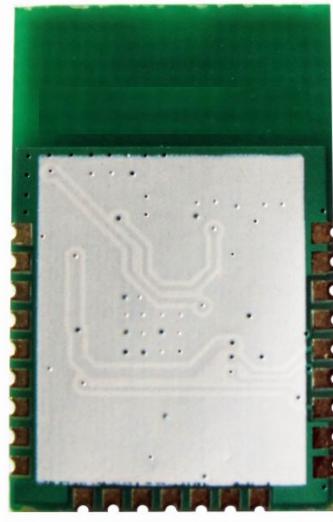


Figure 5 : Module PCB Bottom view

Table 1 shows the pin-out diagram of the module.

Table 1: Pin Description(Cont.)

Pin Number	Pin Name	Default State	Function Description
1,2,8,9,25	GND		Connect to ground
3	UP_RX	Input	UART input serial data for the HCI UART interface
4	UP_TX	output	UART output serial data for the HCI UART interface
5	SDA	I/O	I2C Data
6	SCL	output	I2C Clock
7	WP	Input	Write protection
24	VDDIO		Power supply
10	RST		Active_low system reset
11	P0	Input floating	GPIO:P0 SPI_2:莫斯I (master) A/D input
12	P1	Input floating	GPIO:P1 SPI_2:莫SIO (master) A/D input
13	P3	Input floating	GPIO:P3 SPI_2:CLK (master)
14	P2	Input floating	GPIO:P2 SPI_2:CS (master)
15	P4	Input floating	GPIO:P4
16	P8/P33	Input floating	GPIO:P8,P33 A/D input
17	P25	Input floating	GPIO:P25
18	P24	Input floating	GPIO:P24
19	P13/P28	Input floating	GPIO:P13,P28 A/D input PWM2
20	P14/P38	Input floating	GPIO:P14,P38 A/D input
21	P15	Input floating	GPIO:P15 A/D input(Battery monitor)
22	P11/P27	Input floating	GPIO:P11,P27
23	P12/P26	Input floating	GPIO:P12,P26

Section 2: Specifications

2.1 Electrical Characteristics

Table 2 shows the maximum electrical rating for voltages referenced to VDD pin.

Table 2: Maximum Electrical Rating

Rating	Symbol	Value	Unit
DC supply voltage for RF domain	–		V
DC supply voltage for core domain	–	1.4	V
DC supply voltage for VDDM domain (UART/I ² C)	–	3.8	V
DC supply voltage for VDDO domain	–	3.8	V
DC supply voltage for VR3V	–	3.8	V
DC supply voltage for VDDFE	–	1.4	V
Voltage on input or output pin	–	VSS – 0.3 to VDD + 0.3	V
Operating ambient temperature range	Topr	0 to +70	°C
Storage temperature range	Tstg	–40 to +125	°C

Table 3 shows the power supply characteristics for the range T_J = 0 to 125°C.

Table 3: Power Supply

Parameter	Minimum ^a	Typical	Maximum ^a	Unit
DC supply voltage for RF	1.14	1.2	1.26	V
DC supply voltage for Core	1.14	1.2	1.26	V
DC supply voltage for VDDM (UART/I ² C)	1.62	–	3.63	V
DC supply voltage for VDDO	1.62	–	3.63	V
DC supply voltage for LDOIN	1.425	–	3.63	V
DC supply voltage for VDDFE	1.14	1.2 ^b	1.26	V

a. Overall performance degrades beyond minimum and maximum supply voltages.

b. 1.2V for Class 2 output with internal VREG.

Table 4: Current Consumption ^a

Operational Mode	Conditions	Typ	Max	Unit
Receive	Receiver and baseband are both operating, 100% ON.	–	TBD	mA
Transmit	Transmitter and baseband are both operating, 100% ON.	–	TBD	mA
Sleep	Internal LPO is in use.	28.4	–	µA
HIDOFF	–	1.5	–	µA

a. Current consumption measurements are taken at VBAT with the assumption that VBAT is connected to VDDIO and LDOIN.

2.2 RF Specifications

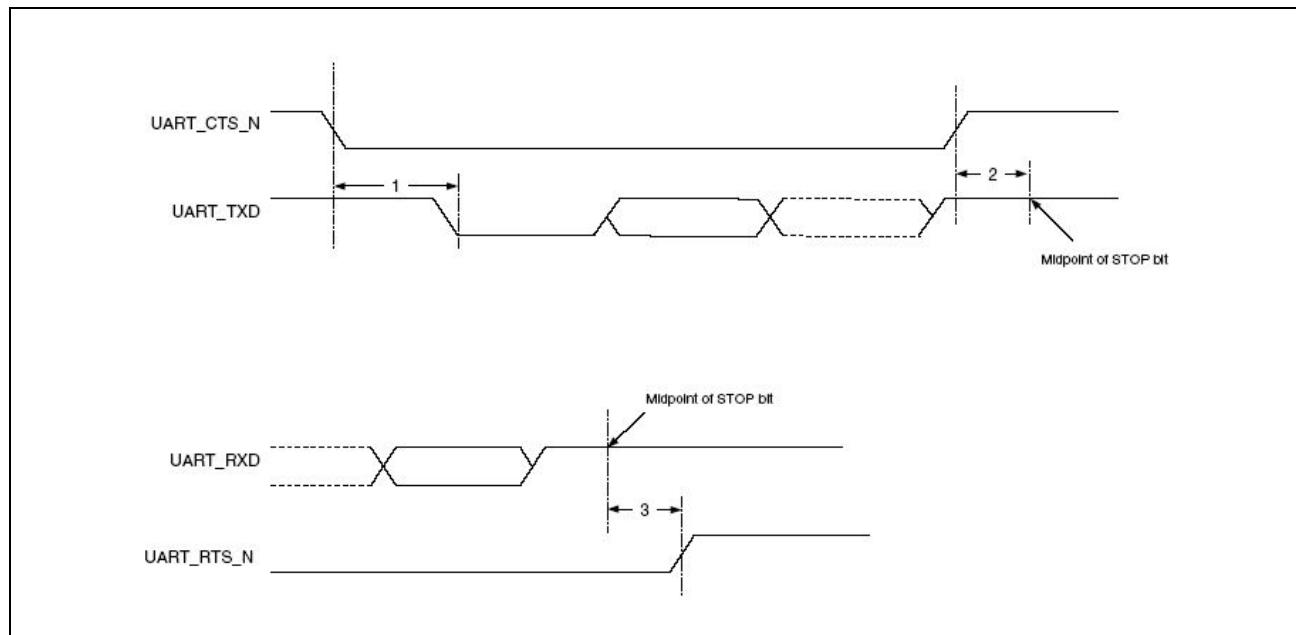
Table 5: Receiver RF Specifications

Parameter	Mode and Conditions	Min	Typ	Max	Unit
Receiver Section^a					
Frequency range	—	2402	—	2480	MHz
RX sensitivity (standard)	0.1%BER, 1 Mbps	—	-85	—	dBm
RX sensitivity (low current)	—	TBD	—	—	dBm
Input IP3	—	-16	—	—	dBm
Maximum input	—	-10	—	—	dBm
Interference Performance^{a,b}					
C/I cochannel	0.1%BER	—	—	21	dB
C/I 1 MHz adjacent channel	0.1%BER	—	—	15	dB
C/I 2 MHz adjacent channel	0.1%BER	—	—	-17	dB
C/I \geq 3 MHz adjacent channel	0.1%BER	—	—	-27	dB
C/I image channel	0.1%BER	—	—	-9.0	dB
C/I 1 MHz adjacent to image channel	0.1%BER	—	—	-15	dB
Out-of-Band Blocking Performance (CW)^{a,b}					
30 MHz to 2000 MHz	0.1%BER ^c	—	-30.0	—	dBm
2003 MHz to 2399 MHz	0.1%BER ^d	—	-35	—	dBm
2484 MHz to 2997 MHz	0.1%BER ^d	—	-35	—	dBm
3000 MHz to 12.75 GHz	0.1%BER ^e	—	-30.0	—	dBm
Spurious Emissions					
30 MHz to 1 GHz	—	—	—	-57.0	dBm
1 GHz to 12.75 GHz	—	—	—	-55.0	dBm

- a. 30.8% PER.
- b. Desired signal is 3 dB above the reference sensitivity level (defined as -70 dBm).
- c. Measurement resolution is 10 MHz.
- d. Measurement resolution is 3 MHz.
- e. Measurement resolution is 25 MHz.

Table 6: Transmitter RF Specifications

Parameter	Min	Typ	Max	Unit
Transmitter Section				
Frequency range	2402	–	2480	MHz
Output power adjustment range	–	0	–	dBm
Default output power	–	4.0	–	dBm
Output power variation	–	2.0	–	dB
Adjacent Channel Power				
$ M - N = 2$	–	–	-20	dBm
$ M - N \geq 3$	–	–	-30	dBm
Out-of-Band Spurious Emission				
30 MHz to 1 GHz	–	–	-36.0	dBm
1 GHz to 12.75 GHz	–	–	-30.0	dBm
1.8 GHz to 1.9 GHz	–	–	-47.0	dBm
5.15 GHz to 5.3 GHz	–	–	-47.0	dBm
LO Performance				
Initial carrier frequency tolerance	–	–	± 150	kHz
Frequency Drift				
Frequency drift	–	–	± 50	kHz
Drift rate	–	–	20	kHz/50 μ s
Frequency Deviation				
Average deviation in payload (sequence used is 00001111)	225	–	275	kHz
Maximum deviation in payload (sequence used is 10101010)	185	–	–	kHz
Channel spacing	–	2	–	MHz


2.3 Timing and AC Characteristics

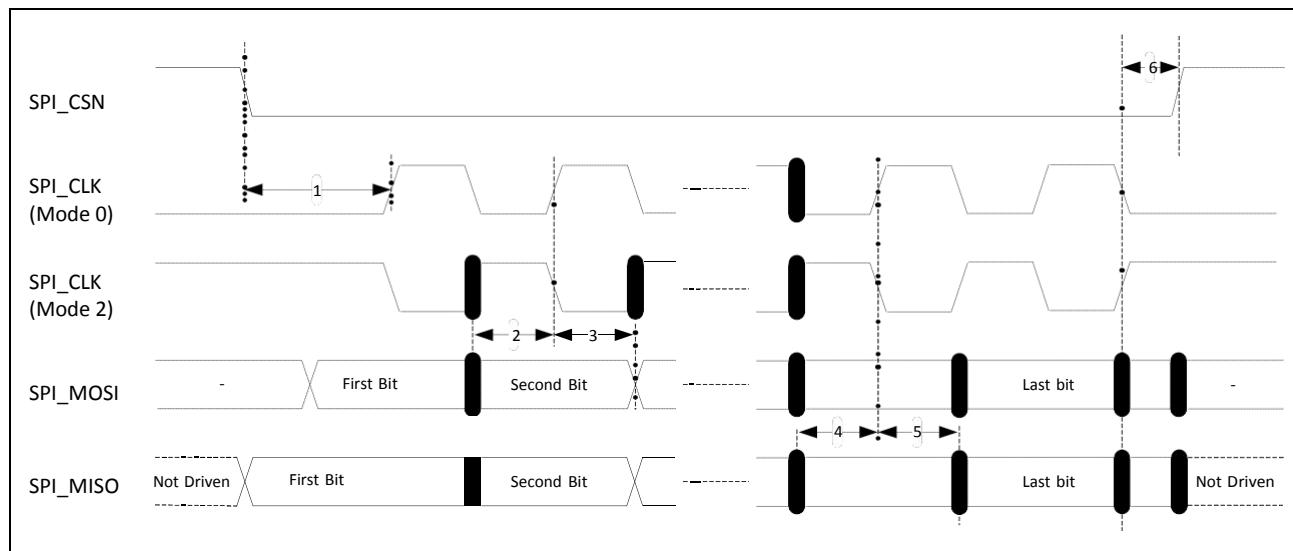
In this section, use the numbers listed in the **Reference** column of each table to interpret the following timing diagrams.

UART Timing

Table 7: UART Timing Specifications

Reference	Characteristics	Min	Max	Unit
1	Delay time, UART_CTS_N low to UART_TxD valid	–	24	Baud out cycles
2	Setup time, UART_CTS_N high before midpoint of stop bit	–	10	ns
3	Delay time, midpoint of stop bit to UART_RTS_N high	–	2	Baud out cycles

Figure 6: UART Timing


SPI Timing

The SPI interface supports clock speeds up to 12 MHz with $V_{DDIO} \geq 2.2V$. The supported clock speed is 6 MHz when $2.2V > V_{DDIO} \geq 1.62V$.

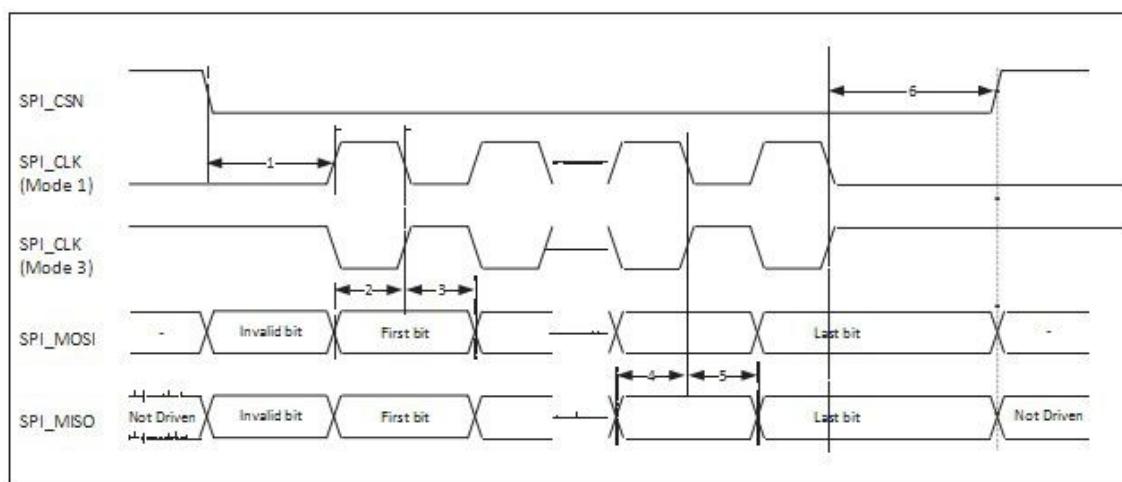

[Figure 7](#) and [Figure 8](#) show the timing requirements when operating in SPI Mode 0 and 2, and SPI Mode 1 and 3, respectively.

Table 8: SPI Interface Timing Specifications

Reference	Characteristics	Min	Typ	Max
1	Time from CSN asserted to first clock edge	1 SCK	100	∞
2	Master setup time	—	$\frac{1}{2}$ SCK	—
3	Master hold time	$\frac{1}{2}$ SCK	—	—
4	Slave setup time	—	$\frac{1}{2}$ SCK	—
5	Slave hold time	$\frac{1}{2}$ SCK	—	—
6	Time from last clock edge to CSN deasserted	1 SCK	10 SCK	100

Figure 7: SPI Timing – Mode 0 and 2

Figure 8: SPI Timing – Mode 1 and 3

Section3: Reference Design

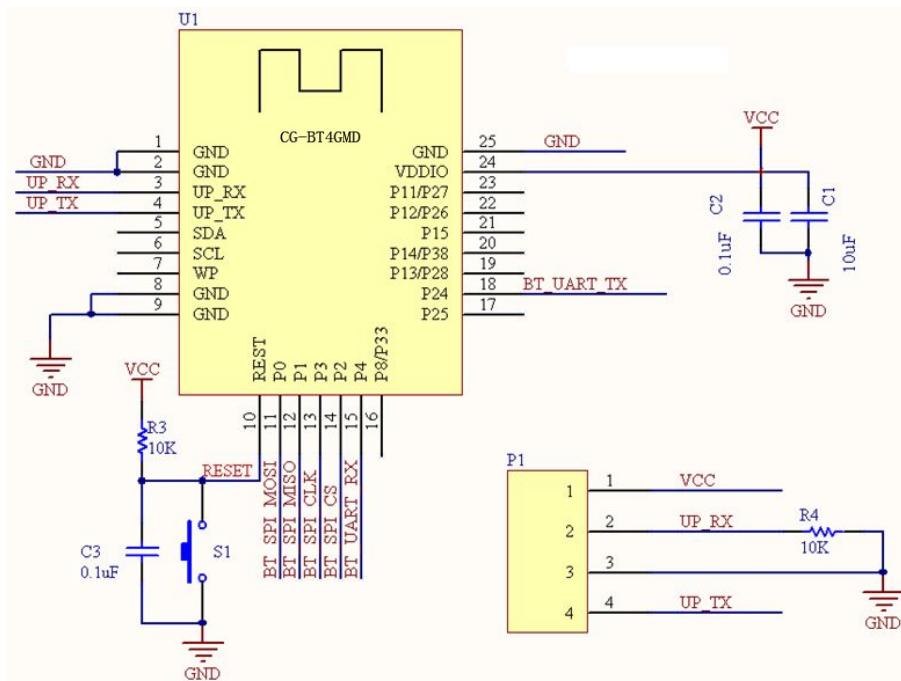


Figure 9: Module Reference Schematic

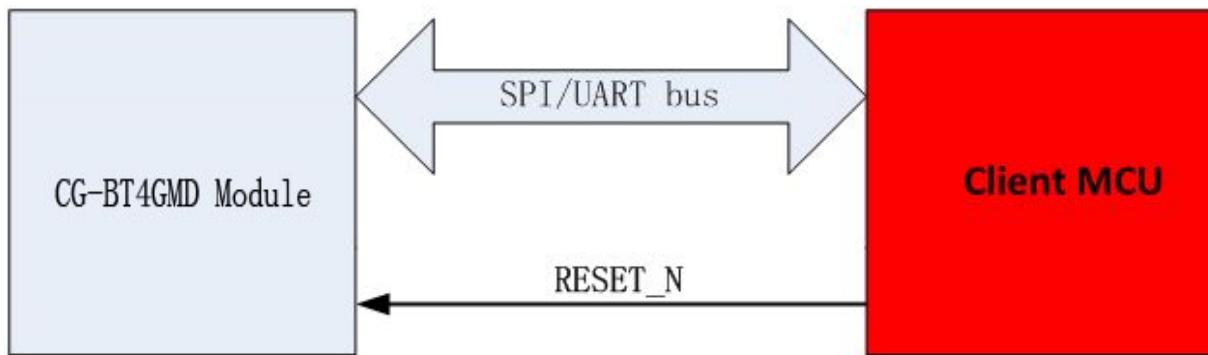


Figure 10: SPI/UART Reference Interface

REVISION HISTORY

Data	Revision	Changes
30-June-13	1.0	Initial Version
13-July-13	1.1	The position of Module pins is changed (1) Figure 2 is changed (2) Table 1 is changed (3) Figure 9 is changed
03-Sep-14	1.3	Figure 9 is changed Figure 10 is changed